图书介绍

近代物理学 改编版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

近代物理学 改编版
  • (美)伯恩斯坦,(美)菲什波恩,(美)高斯奥沃茨原著;史斌星改编 著
  • 出版社: 高等教育出版社
  • ISBN:7040164515
  • 出版时间:2005
  • 标注页数:505页
  • 文件大小:110MB
  • 文件页数:40115668页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

近代物理学 改编版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 A Review1

1-1 Newton’s Laws2

Gravity3

Hooke’s Law3

1-2 Work, Energy, and the Conservation of Energy5

1-3 Rotations and the Center of Mass8

1-4 Elastic Media and Waves10

Power and Energy in Waves13

Reflection and Refraction14

Coherence, Interference, and Diffraction14

The Doppler Shift15

1-5 Thermal Phenomena16

Kinetic Theory19

1-6 The Atomic Structure of Matter21

1-7 Electricity and Magnefism24

1-8 Electromagnetic Waves and Light29

Energy and Momentum Transport32

Polarization33

Conclusion33

PART 1 Quantum Mechanics35

Historical Introduction35

2 Waves As Particles and Particles As Waves42

2-1 The Nature of Photons42

2-2 The Photoelectric Effect45

2-3 The Compton Effect49

2-4 Blackbody Radiation51

2-5 Conceptual Consequences of Light As Particles55

2-6 Matter Waves and Their Detection56

Conditions for Interference in Crystals57

Testing the Wave Character of Electrons59

2-7 Conceptual Consequences of Particles As Waves60

Summary62

Questions62

Problems63

3 Atoms and the Bohr Model67

3-1 The Behavior and Structureof Atoms67

3-2 The Bohr Atom69

The Atomic Radius71

The Atomic Energy72

Atomic Transitions in the Bohr Model74

The Franck-Hertz Experiment78

3-3 Application of Bohr’s Ideas to Other Systems79

Rotations of Diatomic Molecules79

The Harmonic Oscillator82

3-4 The Correspondence Principle83

Experiments on Nearly Classical Atoms85

Summary86

Questions86

Problems87

4 The Schrodinger Equation91

4-1 Wave Functions and Probabilities91

The Probabilistic Interpretation94

Towards an Equation for the Wave Function96

4-2 The Form of the Schrodinger Equation97

4-3 Expectation Values99

Normalization100

Expectation Values100

4-4 The Time-Independent Schrodinger Equation103

4-5 An Example: The Infinite Well104

The Physical Meaning of Eigenfunctions and Eigenvalues108

4-6 The Schrodinger Equation in Three Dimensions110

Summary111

Questions111

Problems112

Appendix115

5 Wave Packets and the Uncertainty Principle117

5-1 A Free Electron in One Dimension117

5-2 Wave Packets121

Making a Pulse122

The Free Particle Moves126

5-3 Uncertainty Relations127

Evaluation of Widths in Position and Momentum127

The Heisenberg Uncertainty Relation129

5-4 The Meaning of the UncertaintyRelations133

The Two-Slit Experiment136

5-5 The Time-Energy UncertaintyRelation138

5-6 Estimating Energies140

Summary142

Questions143

Problems144

6 Barriers and Wells148

6-1 Particle Motion in the Presence of a Potential Barrier149

6-2 Wave Functions in the Presence of a Potential Barrier151

Continuity Conditions153

Properties of the Solution for E > V0154

6-3 Tunneling through the Potential Barrier156

6-4 Applications and Examples of Tunneling159

Nuclear Physics159

Molecular Physics161

Electronics164

6-5 Bound States167

Even and Odd Solutions169

Nodes and Energies171

Summary172

Questions173

Problems174

Appendix178

7 Angular Momentum and the Hydrogen Atom180

7-1 The Schrodinger Equation for Central Potentials181

Reduction and Partial Solution of the Schrodinger Equation182

Probabilistic Interpretation of the Wave Function184

Solving for the Spherical Harmonics185

7-2 Angular Momentum189

Eigenvalue Equations for L2 and Lz190

7-3 Allowed Energies and Electron Spatial Distribution in the Hydrogen Atom193

Energy Eigenvalues for Hydrogen194

Radial Eigenfunctions for Hydrogen196

7-4 The Zeeman Effect200

The Connection between Magnetic Moments and Angular Momentum200

Hydrogen in Magnetic Fields and the Zeeman Effect202

Experimental Observation of the Zeeman Effect204

The Stern-Gerlach Experiment204

7-5 Spin205

The Magnetic Moment of the Electron andthe Anomalous Zeeman Effect207

Modern Measurement of the Electron g-Factor209

Addition of Spin and Orbital Angular Momentum210

Spin-Orbit Coupling211

7-6 Hyperfine Structure and Magnetic Resonance Imaging212

Nuclear Magnetic Resonance214

Summary216

Questions217

Problems218

8 Many Particles223

8-1 The Multiparticle Schrodinger Equation223

8-2 Independent Particles224

8-3 Identical Particles226

8-4 Exchange Symmetries and the Pauli Principle229

The Total Spin of Two Electrons232

Electrons in a Well233

Exchange Forces236

8-5 The Fermi Energy237

Three Dimensions240

Examples of Degenerate Matter244

8-6 Degeneracy Pressure244

A Back-of-the-Envelope Estimate of Degeneracy Pressure244

A More Accurate Calculation of the Degeneracy Pressure245

Astrophysical Applications246

Summary249

Questions249

Problems250

PART 2 Applications255

9 Complex Atoms and Molecules256

9-1 Energy in the Helium Atom256

9-2 Building Up the Periodic Table258

How to Build Up the Periodic Table260

9-3 Beyond Z = 10 and General Comments264

Moseley’s Law and the Auger Effect267

9-4 Molecules270

The H2+ Molecule270

The H2 Molecule and Valence Bonds272

Ionic Bonding273

9-5 Nuclear Motion and Its Consequences274

Vibrations in Molecules274

Rotations of Molecules277

Summary280

Questions281

Problems282

10 Statistical Physics284

10-1 The Description of a Classical Gas285

10-2 The Maxwell Distribution289

Experimental Verification of the MaxwellDistribution292

10-3 The Boltzmann Distribution293

An Elementary Derivation of the Boltzmann Distribution294

A System of Molecules with Discrete Energies296

10-4 Equipartition and Heat Capacity299

Experiments on Equipartition304

10-5 The Fermi-Dirac Distribution305

Identification of the Constants307

10-6 The Bose-Einstein Distribution308

10-7 Transition to a Continuum Distribution and the Calculation of Averages311

The Transition to the Continuum312

Finding Averages312

10-8 Systems of Relativistic Particles and the Blackbody Distribution314

10-9 Some Applications315

The Specific Heat of Electrons in Metals315

The Specific Heat of Molecules316

Bose-Einstein Condensation317

Liquid Helium and Superfluidity320

Summary322

Questions323

Problems324

11Decays, Radiation fromAtoms, and Lasers331

11-1 Decay Rates and Exponential Decay331

Exponential Decay332

11-2 The Ingredients of a Quantum Calculation334

Quantum Mechanical Expression for the Transition Rate335

Selection Rules336

11-3 Induced Transitions337

11-4 Lasers340

Creating a Population Inversion342

Pumping Schemes343

The Cavity344

Pulses346

Varieties of Lasers347

The Gyro Laser348

Cooling and Trapping of Atoms350

Optical Tweezers and Scissors351

Summary352

Questions352

Problems353

12 Conductors,Semiconductors, and Superconductors356

12-1 The Classical Theory of Conductivity356

Mean Free Path and Collision Cross Sections357

The Classical Drude Formula359

12-2 The Quantum Mechanical Free-elec-tron Model360

The Quantum Mechanical Speed for the Drude Formula361

Scattering from a Regular Lattice362

12-3 Band Structure366

The Connection between Bands and Propagation in a Lattice370

The Differences between Conductors and Insulators374

12-4 Semiconductors375

Electrons and Holes377

12-5 Intrinsic and Extrinsic Semiconductors382

Fermi Energies in Doped Semiconductors383

12-6 Engineering Applications of Semiconductors: Present and Future384

Optical Effects in Semiconductors384

The p-n Junction386

Transistors390

Semiconductor Lasers392

Nanostructures and Integrated Circuits392

Artificial Atoms393

12-7 Superconductivity395

Magnetic Properties of Superconductors395

Specific Heat and the Superconducting Energy Gap396

The Bardeen-Cooper-Schrieffer (BCS) Theory398

Magnetic Flux Quantization399

High Temperature Superconductors402

Summary402

Questions403

Problems404

13 The Atomic Nucleus407

13-1 Neutrons and Protons407

13-2 Nuclear Size and Mass410

13-3 The Semiempirical Mass Formula412

Nuclear Decays417

13-4 Aspects of Nuclear Structure419

The Liquid-drop Model420

The Shell Model422

13-5 Nuclear Reactions425

Time Dependence in Quantum Mechanical Decays425

Nuclear Decay Modes427

Collision Reactions431

13-6 Applications432

Geological and Archeological Dating432

Nuclear Chain Reactions (Fission)434

Fusion Reactions435

Effects of Radiation436

Summary437

Questions438

Problems439

14 Elementary Particle Physics444

14-1 Relativistic Quantum Mechanics and Antiparticles445

14-2 Conservation Laws448

Does the Proton Decay?449

14-3 Virtual Particles and a Pictorial Representation451

Feynman Diagrams451

Quantum Electrodynamics453

14-4 The Yukawa Hypothesis and Pions454

14-5 The Particle “Zoo” and the Discovery of Quarks458

The Quark Model461

Quark Confinement and the Experimental Discovery of Quarks464

14-6 Interactions among the Quarks: Quantum Chromodynamics465

Heavy Quarks and Quarkonium467

14-7 Weak Interactions and Leptons470

Yukawa Hypothesis for the Weak Interactions473

More Leptons474

14-8 Pulling Things Together475

Internal Conservation Laws Revisited475

The Standard Model477

Summary478

Questions479

Problems479

Appendix A Tables485

Appendix B A Mathematical Tool Chest489

Answers to Odd-Numbered Problems498

Bibliography503

Photo Credits506

热门推荐